# **MATHEMATICS-I**

Subject code: MA101BS

**Regulations: R18-JNTUH** 

Class: I Year B. Tech CE & ME I Sem



Department of Science and Humanities

BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

### **MATHEMATICS-I (MA101BS)**

### I. COURSE OVERVIEW:

The students will improve their ability to think critically, to analyze a real problem and solve it using a wide array of mathematical tools. They will also be able to apply these ideas to a wide range of problems that include the Engineering applications.

### **II. PREREQUISITE:**

- 1. Different types of matrices.
- 2. Differentiation and Integration.
- 3. Concepts of sequence and series.
- 4. Basic knowledge of calculation of basic formulas.
- 5. Basic knowledge of partial differentiation.

### **III. COURSE OBJECTIVE:**

| 1. | Types of matrices and their properties.                                                                                      |
|----|------------------------------------------------------------------------------------------------------------------------------|
| 2. | Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations |
| 3. | Concept of Eigen values and eigenvectors and to reduce the quadratic form to canonical form.                                 |
| 4. | Concept of Sequence                                                                                                          |
| 5. | Concept of nature of the series                                                                                              |
| 6. | Geometrical approach to the mean value theorems and their application to the mathematical problems                           |
| 7. | Evaluation of surface areas and volumes of revolutions of curves                                                             |

| 8.  | Evaluation of improper integrals using Beta and Gamma functions  |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 9.  | Partial differentiation, concept of total derivative             |  |  |  |  |  |  |  |  |
| 10. | Finding maxima and minima of function of two and three variables |  |  |  |  |  |  |  |  |

### **IV.COURSE OUTCOMES:**

| S. No | Description                                                      | Bloom's Taxonomy Level |
|-------|------------------------------------------------------------------|------------------------|
|       |                                                                  |                        |
| 1.    | Write the matrix representation of a set of linear               | Knowledge, Analyze     |
|       | equations and to analyse the solution of the system of equations | (Level 1,Level 4)      |
| 2.    | Find the Eigen values and Eigen vectors                          | Knowledge (Level 1)    |
| 3.    | Reduce the quadratic form to canonical form                      | Knowledge, Analyze     |
|       | using orthogonal transformations                                 | (Level 1,Level 4)      |
| 4.    | Analyse the nature of sequence and series                        | Knowledge, Analyze     |
|       |                                                                  | (Level 1,Level 4)      |
| 5.    | Solve the applications on the mean value                         | Knowledge, Analyze     |
|       | theorems                                                         | (Level 1,Level 4)      |
| 6.    | Evaluate the improper integrals using Beta and                   | Knowledge, Analyze     |
|       | Gamma functions                                                  | (Level 1,Level 4)      |
| 7.    | Find the extreme values of functions of two                      | Knowledge, Analyze     |
|       | variables with/ without constraints                              | (Level 1,Level 4)      |

### V. HOW PROGRAM OUTCOMES ARE ASSESSED:

| Program | Outcomes                                                                                                                                                                                                                                             | Level | Proficiency<br>assessed by              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|
| PO1     | Anability to apply knowledge of computing, mathematical foundations, algorithmic principles, and computerscience and engineering theory in the modeling and design of computer-based system world problems (fundamental engineering analysis skills) | 1     | Assignments and Tutorials.              |
| PO2     | An ability to design and conduct experiments, as well as to analyze and interpret data (information retrieval skills)                                                                                                                                | 3     | Assignments,<br>Tutorials and<br>Exams. |

| PO3  | An ability to design, implement, and evaluate a computer- An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs, within realistic constraints such as economic, environmental, social, political, health and safety, manufacturability, and sustainability (Creative Skills) and sustainability (Creative Skills) | 3 | Assignments,<br>Tutorials and<br>Exams. |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------|
| PO4  | An ability to function effectively on multi-disciplinary teams (team work)                                                                                                                                                                                                                                                                                                              | 1 |                                         |
| PO5  | An ability to analyze a problem, identify, formulate and use the appropriate computing and engineering requirements for obtaining its solution ( <b>Engineering problem solving skills</b> )                                                                                                                                                                                            | 3 | Assignments and Exams                   |
| PO6  | An understanding of professional, ethical, legal, security and social issues and responsibilities ( <b>professional integrity</b> )                                                                                                                                                                                                                                                     | 1 |                                         |
| PO7  | An ability to communicate effectively both in writing and orally (speaking / writing skills)                                                                                                                                                                                                                                                                                            | 1 |                                         |
| PO8  | The broad education necessary to analyze the local and global impact of computing and engineering solutions on individuals, organizations, and society (engineering impact assessment skills)                                                                                                                                                                                           | 1 | Assignments and Exams.                  |
| PO9  | Recognition of the need for, and an ability to engage in continuing professional development and life-long learning (continuing education awareness)                                                                                                                                                                                                                                    |   | Assignments and Exams                   |
| PO10 | A Knowledge of contemporary issues (social awareness)                                                                                                                                                                                                                                                                                                                                   | 3 | Assignments and Exams                   |
| PO11 | An ability to use current techniques, skills, and tools necessary for computing and engineering practice ( <b>practical engineering analysis skills</b> )                                                                                                                                                                                                                               | 3 | Assignments and Exams                   |
| PO12 | An ability to apply design and development principles in the construction of software and hardware systems of varying complexity (software hardware interface)                                                                                                                                                                                                                          |   |                                         |

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) 4: None

### VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|      | Program Specific Outcomes                                                                                                                                                                                                                                                                                                           | Level | Proficiency<br>assessed by              |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|
| PSO1 | <b>UNDERSTANDING:</b> Graduates will have an ability to understand, analyze and solve problems using basic mathematics and apply the techniques related to irrigation, structural design, etc.                                                                                                                                      |       | Assignments,<br>Tutorials and<br>Exams. |
| PSO2 | ANALYTICAL SKILLS: Graduates will have an ability to design civil structures, using construction components and to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety manufacturability and reliability and learn to work with multidisciplinary teams. | 3     | Projects                                |
| PSO3 | <b>BROADNESS:</b> Graduates will have an exposure to various fields of engineering necessary to understand the impact of other disciplines on civil engineering blueprints in a global, economic, and societal context and to have necessary focus for postgraduate education and research opportunities at global level.           | 1     | Guest Lectures                          |

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) 4: None

### **VII. SYLLABUS:**

### **UNIT-I: Matrices**

Matrices: Types of Matrices, Symmetric; Hermitian; Skew-symmetric; Skew-Hermitian; orthogonal matrices; Unitary Matrices; rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method; System of linear equations; solving system of Homogeneous and Non-Homogeneous equations. Gauss elimination method; Gauss Seidel Iteration Method.

### **UNIT-II: Eigen values and Eigen vectors**

Linear Transformation and Orthogonal Transformation: Eigen values and Eigenvectors and

their properties: Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation

### **UNIT-III: Sequences & Series**

Sequence: Definition of a Sequence, limit; Convergent, Divergent and Oscillatory sequences. Series: Convergent, Divergent and Oscillatory Series; Series of positive terms; Comparison test, p-test, D-Alembert's ratio test; Raabe's test; Cauchy's Integral test; Cauchy's root test; logarithmic test. Alternating series: Leibnitz test; Alternating Convergent series: Absolute and Conditionally Convergence.

#### **UNIT-IV: Calculus**

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem. Taylor's Series. Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

### **UNIT-V: Multivariable calculus (Partial Differentiation and applications)**

Definitions of Limit and continuity. Partial Differentiation; Euler's Theorem; Total derivative; Jacobian; Functional dependence and independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

#### **GATE SYLLABUS:**

**Differential Equations**: Ordinary Differential Equations First order ordinary differential equations, existence and uniqueness theorems for initial value problems, systems of linear first order ordinary differential equations of higher order with constant coefficients; linear second order ordinary differential equations with variable coefficients

### **Linear Systems of Equations:**

Linear transformations and their matrix representations, rank; systems of linear equations, Hermitian, Skew Hermitian and unitary matrices, Jordan

### Eigen values, Eigen Vectors:

Eigen values and eigenvectors, minimal polynomial, Cayley-Hamilton Theorem, diagonalization

Functions of several variables: Functions of several variables, maxima, minima

### **Partial Differential Equations:**

Partial Differential Equations Linear and quasi-linear first order partial differential equations, method of characteristics; second order linear equations in two variables and their classification;

#### **IES SYLLABUS:**

Matrix: Matrix theory, Eigen values & Eigen vectors, system of linear equations

**Differential Equations**: Numerical methods for solution of non-linear algebraic equations and differential equations

**Partial differential equations:** Partial derivatives, linear, nonlinear and partial differential equations, initial and boundary value problems

### **VIII. LESSON PLAN-COURSE SCHEDULE:**

| Sessi | Week | Unit | ТОРІС                                             | Course learning outcomes        | Reference   |
|-------|------|------|---------------------------------------------------|---------------------------------|-------------|
| 1.    |      |      | Types of Matrices                                 | <b>Define</b> Types of matrices | T1,T2,R3,R4 |
| 2.    | 1    |      | Symmetric, Skew-symmetric and orthogonal matrices | <b>Define</b> real matrices     | T1,T2,R3,R4 |
| 3.    |      |      | Hermitian, Skew-Hermitian and                     | <b>Define</b> complex matrices  | T1,T2,R3,R4 |

|     |   | 1 | Unitary Matrices                                                                           |                                                            |             |
|-----|---|---|--------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------|
| 4.  |   |   | Rank of matrix with examples                                                               | Find rank of a matrix                                      | T1,T2,R3,R4 |
| 5.  |   |   | Echelon form with problems                                                                 | <b>Solve</b> problems on echelon form                      | T1,T2,R3,R4 |
| 6.  | 2 |   | Normal form with problems                                                                  | <b>Solve</b> problems on normal form                       | T1,T2,R3,R4 |
| 7.  |   |   | Inverse of Non-singular matrices by Gauss-Jordan method                                    | <b>Find</b> inverse byGauss-Jordan method                  | T1,T2,R3,R4 |
| 8.  |   |   | System of linear equations                                                                 | Solve problems                                             | T1,T2,R3,R4 |
| 9.  |   |   | Solving system of Homogeneous equations                                                    | Solve Homogeneous equations                                | T1,T2,R3,R4 |
| 10. |   |   | Solving system of Non-<br>Homogeneous equations                                            | <b>Solve</b> Non-Homogeneous equations                     | T1,T2,R3,R4 |
| 11. |   |   | Gauss elimination method                                                                   | <b>Solve</b> problems using Gauss elimination method       | T1,T2,R3,R4 |
| 12. | 3 |   | Gauss Seidel Iteration Method.                                                             | <b>Solve</b> problems using Gauss Seidel Iteration Method. | T1,T2,R3,R4 |
|     |   |   | *Applications of Arrangements and transformations (content beyond syllabus)  Mock Test – I | Understand applications                                    |             |
|     |   |   |                                                                                            |                                                            |             |
|     |   |   | UNIT – 2                                                                                   |                                                            |             |
| 13. |   | 2 | Introduction of Eigen values and Eigen vectors                                             | <b>Define</b> Eigen values and Eigen vectors               | T1,T2       |
| 14. |   |   | Problems on Eigen values and Eigen vectors                                                 | Solve problems                                             | T1,T2       |
| 15. | 5 |   | Eigen values, Eigen vectors and                                                            | <b>Apply</b> properties on Eigen                           | T1,T2       |

|     |          |   | their properties                                                                            | values and Eigen vectors                                             |             |  |  |
|-----|----------|---|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|--|--|
| 16. | _        |   | Properties of Eigen values, Eigen vectors                                                   | Apply properties on Eigen values and Eigen vectors                   | T1,T2       |  |  |
| 17. |          |   | Diagonalization                                                                             | Find Diagonalization                                                 | T1,T2       |  |  |
| 18  |          |   | Problems Diagonalization                                                                    | Solve problems                                                       | T1,T2       |  |  |
| 19  | _        |   | Cayley - Hamilton theorem and<br>Problems on Inverse and powers<br>of a matrix using Cayley | Solve problems                                                       | T1,T2       |  |  |
| 20. |          |   | Quadratic forms                                                                             | Solve problems                                                       | T1,T2       |  |  |
| 21. |          | = | Nature of the Quadratic Forms                                                               | <b>Find</b> Nature of the Quadratic Forms                            | T1,T2       |  |  |
| 22. |          |   | Rank, Index and signature of the Quadratic forms                                            | <b>Find</b> Rank, Index and signature of the Quadratic forms         | T1,T2       |  |  |
| 23. | 6        |   | Reduction of Quadratic form to canonical forms by Orthogonal Transformation                 | Solve problems                                                       | T1,T2       |  |  |
| 24. |          | 2 | Reduction of Quadratic form to canonical forms by Orthogonal Transformation                 | Solve problems                                                       | T1,T2       |  |  |
|     |          |   | *Applications of significant of vectors(topic beyond syllabus)                              | Apply vectors                                                        |             |  |  |
|     |          |   | Tutorial / Bridge Class # 1                                                                 |                                                                      |             |  |  |
|     | UNIT – 3 |   |                                                                                             |                                                                      |             |  |  |
| 25. |          |   | Definition of a Sequence                                                                    | <b>Define</b> sequence                                               | T1,T2,R3,R4 |  |  |
| 26. | 7        |   | Limit, Convergent, Divergent and Oscillatory sequences                                      | <b>Define</b> Limit, Convergent, Divergent and Oscillatory sequences | T1,T2,R3,R4 |  |  |
| 27. |          |   | Series: Convergent, Divergent and Oscillatory Series                                        | <b>Define</b> series                                                 | T1,T2,R3,R4 |  |  |

| 28. |   | 3  | Series of positive terms,<br>Comparison test, and p-test                          | Solve problems                   | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |
|-----|---|----|-----------------------------------------------------------------------------------|----------------------------------|-------------------------|---|---|---|---|-----------------------|----------------|-------------|---|---|---|---|---|
| 29. |   |    | D-Alembert's ratio test and<br>Raabe's test                                       | Evaluate integral                | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |
| 30. |   |    | Cauchy's Integral test                                                            | Solve problems                   | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |
| 31. | 8 |    | Cauchy's root test                                                                | Solve problems                   | T1,T2,R3,R4 T1,T2,R3,R4 |   |   |   |   |                       |                |             |   |   |   |   |   |
| 32. |   |    | logarithmic test                                                                  | Solve problems                   | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |
|     |   |    | Tutorial / Bridge Class # 2                                                       |                                  |                         |   |   |   |   |                       |                |             |   |   |   |   |   |
|     |   | •  | I Mid Exami                                                                       | nations                          |                         |   |   |   |   |                       |                |             |   |   |   |   |   |
| 33. |   |    | Alternating series and Leibnitz test                                              | <b>Define</b> Alternating series | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |
| 34. |   |    | Alternating Convergent series                                                     | Solve problems                   | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |
| 35. | 0 | 3  | 3                                                                                 | 3                                | 3                       | 3 | 3 | 3 | 3 | Absolute Convergence. | Solve problems | T1,T2,R3,R4 |   |   |   |   |   |
| 36. | 9 |    |                                                                                   |                                  |                         |   |   |   |   | 3                     | 3              | 3           | 3 | 3 | 3 | 3 | 3 |
|     |   |    | *Convergence and divergence of signals and systems (contents beyond the syllabus) | Understand application           |                         |   |   |   |   |                       |                |             |   |   |   |   |   |
|     |   |    | UNIT – 4                                                                          |                                  |                         |   |   |   |   |                       |                |             |   |   |   |   |   |
| 37  |   |    | Mean value theorems: Rolle's theorem                                              | Apply Rolle's theorem            | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |
| 38  |   | 10 | Lagrange's Mean value theorem with their Geometrical Interpretation               | Apply Mean value theorem         | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |
| 39  |   |    | Lagrange's Mean value theorem with their applications                             | Apply Mean value theorem         | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |
| 40  | ) |    | Cauchy's Mean value Theorem                                                       | Apply Cauchy's Mean value        | T1,T2,R3,R4             |   |   |   |   |                       |                |             |   |   |   |   |   |

|          |    |   |                                                                                                                                                      | Theorem                            |             |  |
|----------|----|---|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|--|
| 41       | 11 |   | Taylor's Series                                                                                                                                      | Apply Taylor's Series              | T1,T2,R3,R4 |  |
| 42       |    |   | Applications of definite integrals to evaluate surface areas of revolutions of curves in Cartesian coordinates                                       | Solve problems                     | T1,T2,R3,R4 |  |
| 43       |    |   | Applications of definite integrals to evaluate surface volumes of revolutions of curves in Cartesian coordinates                                     | Solve problems                     | T1,T2,R3,R4 |  |
| 44       |    | 4 | Applications of definite integrals<br>to evaluate surface areas and<br>volumes of revolutions of curves<br>in Cartesian coordinates                  | Solve problems                     | T1,T2,R3,R4 |  |
|          |    |   | Tutorial / Bridge Class # 3                                                                                                                          |                                    |             |  |
| 45       |    |   | Definition of Improper Integral:<br>Beta function                                                                                                    | <b>Define</b> Improper Integral    | T1,T2,R3,R4 |  |
| 46       |    |   | Gamma functions                                                                                                                                      | Apply Gamma functions              | T1,T2,R3,R4 |  |
| 47       |    |   | Applications of Beta functions                                                                                                                       | Apply betafunctions                | T1,T2,R3,R4 |  |
| 48       |    |   | Applications of Gamma functions                                                                                                                      | Apply Gamma functions              | T1,T2,R3,R4 |  |
|          | 12 |   | Applications of improper integrals and Signals and Systems, Linear  Integrated Circuits and digital  Signal Processing (content beyond the syllabus) | <b>Know</b> applications           |             |  |
|          |    |   | Mock Test - II                                                                                                                                       |                                    |             |  |
| UNIT – 5 |    |   |                                                                                                                                                      |                                    |             |  |
| 49       | 13 |   | Definitions of Limit and                                                                                                                             | <b>Define</b> Limit and continuity | T1,T2,R3,R4 |  |

|    |                     |   | continuity                                                                                                                      |                                |             |  |  |  |
|----|---------------------|---|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|--|--|--|
| 50 |                     |   | Partial Differentiation                                                                                                         | Define Partial Differentiation | T1,T2,R3,R4 |  |  |  |
| 5  |                     |   | Partial Differentiation                                                                                                         | Define Partial Differentiation | T1,T2,R3,R4 |  |  |  |
| 52 |                     |   | Euler's Theorem                                                                                                                 | Apply Euler's Theorem          | T1,T2,R3,R4 |  |  |  |
| 53 |                     |   | Total derivative and Jacobian                                                                                                   | Solve problems                 | T1,T2,R3,R4 |  |  |  |
| 54 | 14                  |   | Functional dependence and independence                                                                                          | Solve problems                 | T1,T2,R3,R4 |  |  |  |
| 55 |                     |   | Functional independence                                                                                                         | Solve problems                 | T1,T2,R3,R4 |  |  |  |
| 56 |                     |   | Maxima and minima of functions of two variables                                                                                 | Solve problems                 | T1,T2,R3,R4 |  |  |  |
| 57 |                     |   | Maxima and minima of functions of three variables                                                                               | Solve problems                 | T1,T2,R3,R4 |  |  |  |
| 58 |                     | 5 | Maxima and minima of functions of two variables and three variables using method of Lagrange                                    | Solve problems                 | T1,T2,R3,R4 |  |  |  |
| 59 |                     |   | Maxima and minima of<br>functions of two variables and<br>three variables using method<br>of Lagrange                           | Solve problems                 | T1,T2,R3,R4 |  |  |  |
| 60 | 15                  |   | Maxima and minima of functions of two variables and three variables using method of Lagrange                                    | Solve problems                 | T1,T2,R3,R4 |  |  |  |
|    |                     |   | PDE applications in  Computational Fluid  Dynamics and Aerodynamics  etc.(content beyond syllabus)  Tutorial / Bridge Class # 4 | Know applications              |             |  |  |  |
|    | II Mid Examinations |   |                                                                                                                                 |                                |             |  |  |  |

#### **SUGGESTED BOOKS:**

### **TEXT BOOK:**

- 1. A first course in differential equations with modeling applications by Dennis G. Zill, Cengage Learning publishers.
- 2. Higher Engineering Mathematics by Dr. B. S. Grewal, Khanna Publishers.

#### **REFERENCE BOOKS**

- 3. Advanced Engineering Mathematics by R.K. Jain & S.R.K. Iyengar, 3<sup>rd</sup> edition, Narosa Publishing House, Delhi.
- 4. Engineering Mathematics–I by T.K. V. Iyengar, B. Krishna Gandhi & Others, S. Chand.
- 5. Engineering Mathematics–I by D. S. Chandrasekhar, Prison Books Pvt. Ltd.
- 6. Engineering Mathematics–I by G. Shanker Rao & Others I.K. International Publications.
- 7. Advanced Engineering Mathematics with MATLAB, Dean G. Duffy, 3<sup>rd</sup> Edi, CRC Press Taylor & Francis Group.
- 8. Mathematics for Engineers and Scientists, Alan Jeffrey, 6ht Edi, 2013, Chapman & Hall/CRC
- 9. Advanced Engineering Mathematics, Michael Greenberg, Second Edition. Pearson Education.

### IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF

#### PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| o)     |     |     |     |     | Р   | rogram | Outcom | es (PO) |     |      |      |      |      |     |
|--------|-----|-----|-----|-----|-----|--------|--------|---------|-----|------|------|------|------|-----|
| Course | РО  | РО  | PO3 | PO4 | PO5 | PO6    | PO7    | PO8     | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO |
| 0 0    | 1   | 2   |     |     |     |        |        |         |     |      |      |      |      | 2   |
| CO1    | 1   | 3   | 1   | -   | -   | -      | -      | -       | -   | -    | -    | -    | 1    | -   |
| CO2    | 2   | 2   | -   | -   | -   | -      | -      | -       | -   | -    | -    | -    | 1    | 2   |
| CO3    | 2   | 3   | 1   | -   | 2   | 1      | -      | 1       | •   | ı    | -    | -    | 2    | -   |
| CO4    | 2   | 2   | -   | 2   | -   | 1      | -      | 1       | -   | -    | -    | -    | -    | -   |
| CO5    | 1   | 2   | -   | -   | -   | -      | -      | -       | -   | -    | -    | -    | 1    | -   |
| AVG    | 1.6 | 1.2 | 0.4 | 0.4 | 0.4 | 0.2    | -      | -       | -   | -    | -    | -    | 1    | 0.4 |

1: Slight(Low) 2: N

2: Moderate (Medium)

3: Substantial(High)

**4**: None

**QUESTION BANK: (JNTUH)** 

### **DESCRIPTIVE QUESTIONS:**

UNIT I

### **Short Answer Questions**

| S.No | Question                                                                                                         | Blooms<br>taxonomy<br>level | Course outcome |
|------|------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|
| 1    | Define conjugate of a matrix.                                                                                    | Remember                    | 1              |
| 2    | If A is Hermitian matrix Prove that iA is skew-Hermitian matrix                                                  | Analyse                     | 1              |
| 3    | Prove that $\frac{1}{2}\begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$ is a unitary matrix.               | Understand                  | 1              |
| 4    | Find the value of k such that rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2. | Evaluate                    | 1              |
| 5    | Find the Skew-symmetric part of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & 1 \\ 3 & -1 & 2 \end{bmatrix}$ | Evaluate                    | 1              |

| S.No | Question                                                                                                                                                 | Blooms            | Course  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
|      |                                                                                                                                                          | taxonomy<br>level | outcome |
| 1    | Express the matrix $\begin{bmatrix} 1+i & 2 & 5-5i \\ 2i & 2+i & 4+2i \\ -1+i & -4 & 7 \end{bmatrix}$ as the sum of Hermitian and Skew-Hermitian matrix. | Understand        | 1       |
| 2    | Find the rank of the matrix $\begin{bmatrix} -1 & 2 & 0 \\ 3 & 7 & 1 \\ 5 & 9 & 3 \end{bmatrix}$                                                         | Evaluate          | 1       |
| 3    | Find the rank of the matrix $\begin{bmatrix} 1 & 0 & -4 & 5 \\ 2 & -1 & 3 & 0 \\ 8 & 1 & 0 & -7 \end{bmatrix}$                                           | Evaluate          | 1       |

| 4  | Find a and b such that rank of $\begin{bmatrix} 1 & -2 & 3 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & -2 & a & b \end{bmatrix}$ is 3.                                   | Evaluate | 1 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
| 5  | Find the rank of the matrix $A = \begin{bmatrix} 1 & -2 & 0 & 1 \\ 2 & -1 & 1 & 0 \\ 3 & -3 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{bmatrix}$                    | Evaluate | 1 |
| 6  | Given that $A = \begin{bmatrix} 0 & 1-2i \\ -1-2i & 0 \end{bmatrix}$ show that (I-A)(I+A) <sup>-1</sup> is unitary matrix.                                | Analyze  | 1 |
| 7  | For what value of K such that the matrix $\begin{pmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{pmatrix}$ has           | Analyze  | 1 |
| 8  | Find rank by reducing to Normal form of matrix                                                                                                            | Evaluate | 1 |
| 9  | Reduce the matrix A to its normal form where $A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$ and hence find the rank | Evaluate | 1 |
| 10 | Solve the system of equations x+3y-2z=0, 2x-y+4z=0, x-11y+14z=0.                                                                                          | Analyze  | 1 |

### UNIT II

### **Short Answer Questions**

| S.No | Question                                                                                 | Blooms<br>taxonomy | Course outcome |
|------|------------------------------------------------------------------------------------------|--------------------|----------------|
|      |                                                                                          | level              |                |
| 1    | Find the Eigen values of the matrix $\begin{bmatrix} 4 & 1-3i \\ 1+3i & 7 \end{bmatrix}$ | Evaluate           | 2              |
| 2    | State Cayley- Hamilton Theorem                                                           | Remember           | 2              |
| 3    | Find the Eigen values of the matrix $\begin{bmatrix} 2 & 3+4i \\ 3-4i & 2 \end{bmatrix}$ | Evaluate           | 2              |
| 4    | Identify the nature of the quadratic form $3x^2+3y^2+3z^2+2xy+2xz-2yz$ .                 | Remember           | 3              |

| 5 | If 2,3,4 are the Eigen values of A then find the Eigen values of adjA   | Evaluate | 2 |
|---|-------------------------------------------------------------------------|----------|---|
|   | in 2,3,4 are the Eigen values of 11 then find the Eigen values of adj11 |          |   |

| S.No | Question                                                                                                                                                                                   | Blooms<br>taxonomy<br>level | Course outcome |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|
| 1    | Diagonalize the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{pmatrix}$ and find $A^4$                                                                             | Analyze                     | 2              |
| 2    | Prove that the Eigen Values of Real symmetric matrix are Real.                                                                                                                             | Analyse                     | 2              |
| 3    | Verify Cayley-Hamilton theorem for $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$ and find $A^{-1}$ & $A^{4}$                                                  | Evaluate                    | 2              |
| 4    | Prove that the sum of the Eigen Values of a matrix is equal to its trace and Product of the Eigen Values is equal to its determinant.                                                      | Analyze                     | 2              |
| 5    | Find the Eigen values and Eigen vectors of Hermitian matrix $\begin{bmatrix} 2 & 3+4i \\ 3-4i & 2 \end{bmatrix}$                                                                           | Evaluate                    | 2              |
| 6    | Prove that Eigen values of a skew- Hermitian matrix are either zero or purely imaginary.                                                                                                   | Analyse                     | 2              |
| 7    | Express A <sup>5</sup> -4A <sup>4</sup> -7A <sup>3</sup> +11A <sup>2</sup> -A-10I as a linear polynomial in A, where $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$                    | Understand                  | 2              |
| 8    | Reduce to sum of squares, the quadratic form $x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 8x_1x_3$ and find the rank, index and signature                                                          | Understand                  | 3              |
| 9    | Find the characteristic polynomial of the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ verify Cayley-Hamilton theorem hence find $A^{-1}$ and $A^{4}$ | Apply                       | 2              |
| 10   | Diagonalize the matrix $A = \begin{bmatrix} 2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3 \end{bmatrix}$ by similarity transformation and hence find $A^4$ .                                       | Apply                       | 2              |

### **Short Answer Questions**

| S.No | Question                                                 | Blooms     | Course  |
|------|----------------------------------------------------------|------------|---------|
|      |                                                          | taxonomy   | outcome |
|      |                                                          | level      |         |
| 1    | Define sequence and series.                              | Remember   | 4       |
| 2    | State cauchys n <sup>th</sup> root test.                 | Remember   | 4       |
| 3    | Define absolute convergence and conditional convergence. | Remember   | 4       |
| 4    | State logarithmic test .                                 | Remember   | 4       |
| 5    | Show that the sequence $\frac{1}{n}$ convergent.         | Understand | 4       |

| S.No | Question                                                                                                                                                                                                                                                                                      | Blooms<br>taxonomy | Course outcome |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|
|      |                                                                                                                                                                                                                                                                                               | level              | outcome        |
| 1    | Test for the convergence of the series $\sum \left(\frac{nx}{1+n}\right)^n$                                                                                                                                                                                                                   | Understand         | 4              |
| 2    | Test for the convergence of the series $\sum \left(1 - \frac{1}{n}\right)^{-n^2}$                                                                                                                                                                                                             | Understand         | 4              |
| 3    | Test for the convergence of the series $\sum \frac{x^{2n}}{(n+1)\sqrt{n}}$                                                                                                                                                                                                                    | Understand         | 4              |
| 4    | Test for the convergence of the series $\sum \left(1 - \frac{1}{n}\right)^{-n^2}$ Test for the convergence of the series $\sum \frac{x^{2n}}{(n+1)\sqrt{n}}$ Test for the convergence of the series $\frac{2}{1} - \frac{2.5}{1.5} - \frac{2.5.8}{1.5.9} - \frac{2.5.8.11}{1.5.9.13} - \dots$ | Understand         | 4              |
| 5    | Test for the convergence of summation of $\frac{1}{\sqrt{n}-\sqrt{n+1}}$                                                                                                                                                                                                                      | Understand         | 4              |
| 6    | Test for the boundedness for the sequence $\frac{1}{n^2}$                                                                                                                                                                                                                                     | Understand         | 4              |
| 7    | Test for the convergence of summation of $\frac{1}{\sqrt{n}+\sqrt{n+1}}$ .                                                                                                                                                                                                                    | Understand         | 4              |
| 8    | Test whether the series $\sum (-1)^{n+1} (\sqrt{n+1} - \sqrt{n})$ is absolute convergent or conditional convergent.                                                                                                                                                                           | Understand         | 4              |
| 9    | Test whether the series $\sum (-1)^{n-1} (\frac{1}{n})$ is absolute convergent or                                                                                                                                                                                                             | Understand         | 4              |
|      | conditional convergent.                                                                                                                                                                                                                                                                       |                    |                |
|      | Test whether the series $\sum (-1)^{n-1} (\frac{1}{n^2})$ is absolute convergent or                                                                                                                                                                                                           | Understand         | 4              |
|      | conditional convergent.                                                                                                                                                                                                                                                                       |                    |                |

### **Short Answer Questions**

| S.No | Question                                                                                                 | Blooms            | Course  |
|------|----------------------------------------------------------------------------------------------------------|-------------------|---------|
|      |                                                                                                          | taxonomy<br>level | outcome |
| 1    | What is the value of c in Rolle's theorem for $f(x)=\sin x/e^x$ in $(0,\pi)$                             | Analyse           | 5       |
| 2    | What is the value of c in cauchy's mean value theorem for the function $f(x)=x^2$ , $g(x)=x^3$ in (1,2). | Analyse           | 5       |
| 3    | Define Beta and Gamma function.                                                                          | Remember          | 6       |
| 4    | Define Lagrange's mean value Theorem.                                                                    | Remember          | 5       |
| 5    | Define Cauchy's Mean Value Theorem.                                                                      | Remember          | 5       |

| S.No | Question                                                                                                                                                                                                                                                                                                                                         | Blooms<br>taxonomy<br>level | Course outcome |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|
| 1    | Verify Rolle's theorem for the function $f(x) = \frac{\sin x}{e^x}$ or $e^{-x} \sin x$ in $[0,\pi]$                                                                                                                                                                                                                                              | Apply                       | 5              |
| 2    | Verify Rolle's theorem for the functions $\log \left( \frac{x^2 + ab}{x(a+b)} \right)$ in[a, b], $a > 0$ , $b > 0$ .                                                                                                                                                                                                                             | Apply                       | 5              |
| 3    | a > 0, $b > 0$ ,<br>Verify whether Rolle 's Theorem can be applied to the following functions in the intervals.<br>i) $f(x) = \tan x$ in $[0, \pi]$ and ii) $f(x) = 1/x^2$ in $[-1,1]$                                                                                                                                                           | Apply                       | 5              |
| 4    | Using Rolle 's Theorem, show that $g(x) = 8x^3-6x^2-2x+1$ has a zero between 0 and 1.                                                                                                                                                                                                                                                            | Apply                       | 5              |
| 5    | Verify Lagrange's Mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in [0,4]                                                                                                                                                                                                                                                                    | Apply                       | 5              |
| 6    | If a <b, <math="" p.t="">\frac{b-a}{1+b^2} &lt; Tan^{-1}b - Tan^{-1}a &lt; \frac{b-a}{1+a^2} using Lagrange's Mean value theorem. Deduce the following. (i) <math>\frac{\pi}{4} + \frac{3}{25} &lt; Tan^{-1}\frac{4}{3} &lt; \frac{\pi}{4} + \frac{1}{6}</math> ii). <math>\frac{5\pi + 4}{20} &lt; Tan^{-1}2 &lt; \frac{\pi + 2}{4}</math></b,> | Apply                       | 5              |
| 7    | Show that for any $x > 0$ , $1 + x < e^x < 1 + xe^x$ .                                                                                                                                                                                                                                                                                           | Apply                       | 5              |
| 8    | Prove the relation between Beta and Gamma functions.                                                                                                                                                                                                                                                                                             | Apply                       | 6              |
| 9    | Find c of Cauchy's mean value theorem for                                                                                                                                                                                                                                                                                                        | Apply                       | 5              |

|    | $f(x) = \sqrt{x} & g(x) = \frac{1}{\sqrt{x}} \text{ in [a,b] where } 0 < a < b$                      |       |   |
|----|------------------------------------------------------------------------------------------------------|-------|---|
| 10 | Verify Cauchy's Mean value theorem for $f(x) = e^x & g(x) = e^{-x}$ in [3,7] and find the value of c | Apply | 5 |

### UNIT V

### **Short Answer Questions**

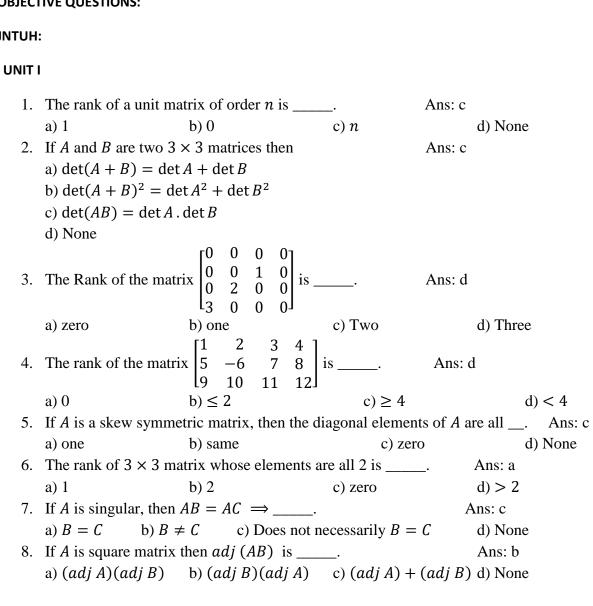
| S.No | Question                                                                     | Blooms<br>taxonomy<br>level | Course outcome |
|------|------------------------------------------------------------------------------|-----------------------------|----------------|
| 1    | Expand $log(1 + x)$ in powers of x.                                          | Remember                    | 7              |
| 2    | If $x + y + z = u$ , $y + z = uv$ , $z = uvw$ then find Jacobian of x, y, z. | Understand                  | 7              |
| 3    | Find the maximum and minimum values of $f(x, y) = x^3 + y^3 - 3axy$          | Understand                  | 7              |
| 4    | Find the maximum and minimum values of $sinx + siny + sin(x + y)$            | Understand                  | 7              |
| 5    | The minimum value of $x^2+y^2+z^2$ given that $xyz = a^3$                    | Understand                  | 7              |

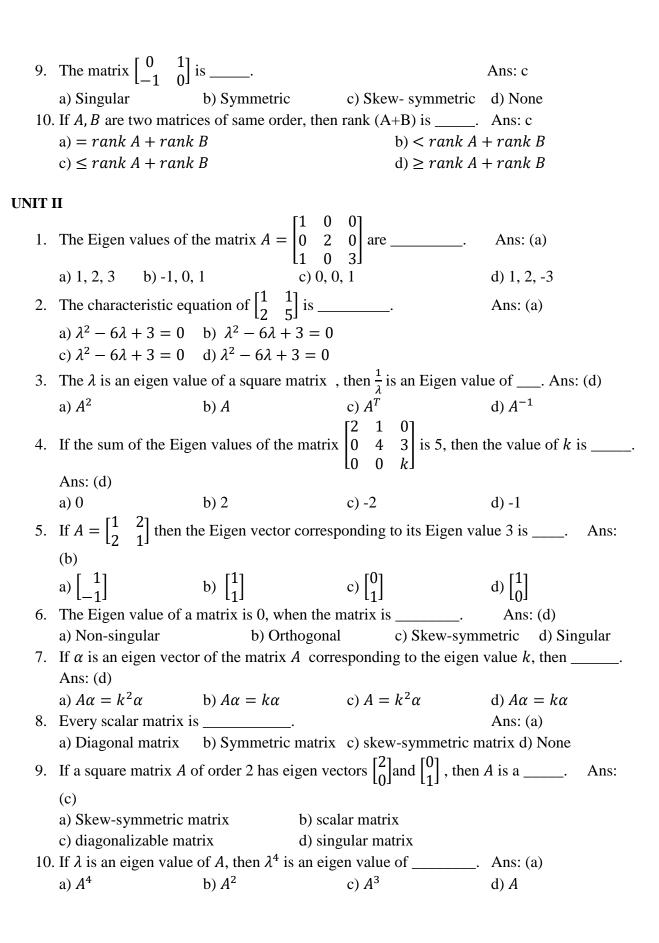
| S.No | Question                                                                                                                                                                                             | Blooms            | Course  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
|      |                                                                                                                                                                                                      | taxonomy<br>level | outcome |
| 1    | Prove that $e^x \cos x = 1 + x - \frac{2x^3}{3!} \dots$                                                                                                                                              | Understand        | 7       |
| 2    | If u and v are functions of x and y defined by $x = u + e^{-v} \sin u$ , $y = v + e^{-v} \cos u$ prove that: $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ .                       | Understand        | 7       |
| 3    | For spherical polar co-ordinates $x = r \sin\theta \cos\phi$ , $y = r \sin\theta \sin\phi$ , $z = r \cos\theta$ , show that $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = r^2 \sin\theta$ . | Understand        | 7       |
| 4    | Discuss the maxima, minima of $x^2+y^2+z^2$ where x, y, z are connected by $xyz = a^3$ .                                                                                                             | Remember          | 7       |
| 5    | Find the volume of the largest parallelepiped that can be inscribed in                                                                                                                               | Understand        | 7       |

|    | the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ .                                                                         |            |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| 6  | If $x=u(1-v)$ , $y = uv$ prove that $JJ^{I}=1$ .                                                                                                  | Understand | 7 |
| 7  | If $x + y + z = u$ , $y + z = uv$ , $z = uvw$ then show that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2v$                                 | Understand | 7 |
| 8  | Prove that the functions $u = xy + yz + zx \ v = x^2 + y^2 + z^2$ , $w = x + y + z$ are functionally dependent and find the relation between them | Remember   | 7 |
| 9  | If $x = \frac{vw}{u}$ , $y = = \frac{uw}{v}$ , $z = = \frac{uv}{w}$ then show that: $\frac{\partial(x,y,z)}{\partial(u,v,w)} = 4$ . Are x, y,     | Understand | 7 |
|    | z functional dependence?                                                                                                                          |            |   |
| 10 | If the sum of the three numbers is a constant then prove that their product is maximum when they are equal.                                       | Understand | 7 |

### **OBJECTIVE QUESTIONS:**

#### JNTUH:





#### **UNIT III**

| 1. | Convergence of the series | 2 | 2.5 | 2.5.8 | 2.5.8.11 | • - |
|----|---------------------------|---|-----|-------|----------|-----|
|    |                           |   | 1 - | 150   | 1 [ 0 12 | 18  |
|    |                           | 1 | 1.5 | 1.5.9 | 1.5.9.13 |     |

- a) Convergent b) Divergent
- c) Oscillatory
- d) None
- Ans: (a)

2. Convergence of summation of 
$$\frac{1}{\sqrt{n}+\sqrt{n+1}}$$
 is

- a) Convergent b) Divergent
- c) Oscillatory
- d) None
- Ans: (b)

3. Convergence of the series 
$$\sum \left(1 - \frac{1}{n}\right)^{-n^2}$$
 is

- a) Convergent b) Divergent
- c) Oscillatory
- d) None
- Ans: (a)

4. Convergence of the sequence 
$$\left(\frac{n+1}{n}\right)$$
 is

- a) Convergent b) Divergent
- c) Oscillatory d) NoneAns: (a)

5. Convergence of the sequence 
$$\left(\frac{n}{n^2+1}\right)$$
 is

- a) Convergent b) Divergent
- c) Oscillatory d) NoneAns: (a)

6. Convergence of the series 
$$1^2 + 2^2 + 3^2 + 4^2 + - - - - is$$

- a) Convergent b) Divergent
- c) Oscillatory d) NoneAns: (b)

7. Convergence of the series 
$$\sum \frac{1}{nlogn}$$
 is

- a) Convergent b) Divergent
- c) Oscillatory d) NoneAns: (b)

8. Convergence of the series 
$$\frac{1}{1.4} + \frac{1}{2.5} + \frac{1}{3.6} + -$$
 is

- a) Convergent b) Divergent
- c) Oscillatory
- d) None
- Ans: ( a)

9. Convergence of the series 
$$\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + ----is$$

- a) Convergent b) Divergent

- c) Oscillatory d) NoneAns: (b)

# 10. Convergence of the series $\sum \frac{1}{2n+3}$ is

- a) Convergent b) Divergent
- c) Oscillatory d) NoneAns: (b)

### **UNIT IV**

1. The value of c of rolles theorem for 
$$f(x) = \frac{\sin x}{e^x}$$
 in  $(0,\pi)$  is \_\_\_\_\_. Ans. b

2. Using which mean value theorem we can calculate approximately the value of 
$$65^{1/6}$$
 in an easier way

Ans. a

- a) lagrange
- b) rolles
- c) cauchys
- d) none

3. Find c using LMVT for 
$$f(x)=\log x$$
 in  $[1,e]$ 

Ans.c

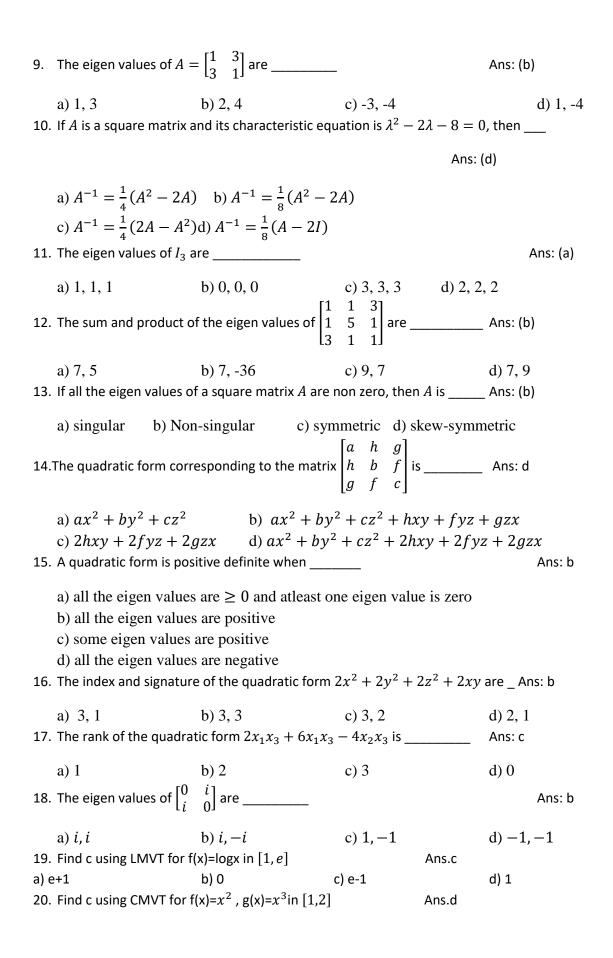
a) e+1

- b) 0
- c) e-1

d) 1

| 4      | . Find c using (<br>a) 14/5 | CMVT for $f(x)=x^2$ , b) 12/7      | $g(x)=x^3$ in [1,2]<br>c) 12/5                         | Ans.d<br>d) 14/3                                          |
|--------|-----------------------------|------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|
| 5      | . Gamma of on               | e is<br>b) two                     | c) one                                                 | Ans. c d) none                                            |
|        | . The value of o            | e of rolles theorem f              | For $f(x)$ =tanx in $(0,\pi)$ is c) Not applicable     | Ans.c                                                     |
| 7      | . Find c using (a) a-b      | CMVT for f(x)=sinx<br>b) a+b       | c, $g(x)=\cos x$ in $[a,b]$<br>c) $(a-b)/2$            | Ans.d<br>d) (a+b)/2                                       |
| 8      | . The value of o            | e of rolles theorem f              | For $f(x)=x+\frac{1}{x}$ in $(\frac{1}{2},2)$ is c) 2  | Ans.b                                                     |
| 9      | . Find c using a) 1/2       | LMVT for $f(x)=x^2$<br>b) 0        | -3x + 2 in $[-2,3]$                                    | Ans.a d) none                                             |
| 1      | 0. Gamma ½ is -<br>a) 0     | b) 1                               | c) $\sqrt{\pi}$                                        | Ans.c<br>d) none                                          |
| UNIT Y |                             | $cx/y$ , $w=xy/z$ , then $\hat{c}$ | $\partial(u,v,w)/\partial(x,y,z) = $                   | Ans. d<br>d) 4                                            |
|        |                             | = x+y+z, w = x-2y+<br>) 10x+4 c) 5 | 3z, then $\partial(u,v,w)/\partial(x,y,$ d) 0          | z) = Ans. b                                               |
|        | . If $u=x + y + z$ ) uv     | , uv=y + z, uvw=z,<br>b) u+v       | then $\partial(x,y,z)/\partial(u,v,w) = c) u^2v$       | = Ans.c                                                   |
| 4      | . If the functio            | ns u, v, w are said                | to be functionally dep                                 | pendent then $\partial(u,v,w)/\partial(x,y,z)$ is Ans.a   |
| 5      |                             | Ans. b                             | to be functionally Indep                               | pendent then $\partial(u,v,w)/\partial(x,y,z)$ is d) none |
|        | ,                           | , ,                                | $(v)/\partial(x,y)\times\partial(x,y)/\partial(u,v)=0$ | •                                                         |
| 7      | . If u=x+y+z, between them  |                                    | $^2+y^2+z^2$ are functional                            | ly dependent then the relation<br>Ans.d                   |

|       | a) w=u+v                                                                | b) 1                                                                 | c) w=4v                                                                                                        | d) w <sup>2</sup>                                                                                                          | =2u+v                 |
|-------|-------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 8.    | If u=x+y+z, v=x <sup>3</sup> +y <sup>3</sup> - relation between then    | n is                                                                 |                                                                                                                | Ans.c                                                                                                                      |                       |
|       | a) w=u+v                                                                | b) w=uv c)                                                           | uw=v d) r                                                                                                      | none                                                                                                                       |                       |
| 9.    | If $u=x+y$ , $w=x^3+y^3+$ relation between them                         |                                                                      | xy-2yz-2zx a                                                                                                   |                                                                                                                            | pendent then the ns.a |
|       | a) u+w=v                                                                | b) 0                                                                 | c) 1                                                                                                           | d) 2                                                                                                                       |                       |
| 10    | If $u=(x-y)/x+y$ , $v=xy$                                               | $/(x+y)^2$ are function                                              | onally depende                                                                                                 | ent then the relation<br>Ans.a                                                                                             | between them is       |
|       | a) u <sup>2</sup> +4v=1                                                 | b) u=v                                                               | c) u+v=0                                                                                                       |                                                                                                                            | ne                    |
|       |                                                                         |                                                                      |                                                                                                                |                                                                                                                            |                       |
| GATE: |                                                                         |                                                                      |                                                                                                                |                                                                                                                            |                       |
| 1.    | The value of the determ                                                 |                                                                      | I .                                                                                                            | Ans: a                                                                                                                     |                       |
|       | a) 0                                                                    | b) 1                                                                 | c) 2                                                                                                           | d) 3                                                                                                                       |                       |
| 2.    | If $\omega$ is a cube root of                                           | unity, then, $\begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}$ | $\begin{bmatrix} \omega & \omega^2 \\ \omega^2 & 1 \\ 1 & \omega \end{bmatrix} = 1$                            |                                                                                                                            | Ans: c                |
|       | a) 1                                                                    | b) 3                                                                 | c) 0                                                                                                           | d) 2                                                                                                                       |                       |
| 3.    | The system of equation                                                  | ons x + y + z = a                                                    | a, 3x - ay - 2                                                                                                 | 2z = b, 5x - 7y =                                                                                                          | c has a solution if   |
|       | Ans: a                                                                  | 1.) h 2 - 1 -                                                        | -) <i>h</i> 2                                                                                                  |                                                                                                                            |                       |
| 4     | a) $b = -2a + c$<br>The equations $2x - y$                              |                                                                      |                                                                                                                |                                                                                                                            |                       |
| ••    | a) Unique solution                                                      |                                                                      |                                                                                                                | e) No solution d) No                                                                                                       |                       |
| 5.    | The conjugate of a ma                                                   |                                                                      | ned by                                                                                                         |                                                                                                                            | Ans: c                |
|       | a) Interchanging rows                                                   |                                                                      |                                                                                                                |                                                                                                                            |                       |
|       | <ul><li>b) taking transpose of</li><li>c) replacing the conju</li></ul> |                                                                      | nd avary alam                                                                                                  | ant in the matrix                                                                                                          |                       |
| 6.    | A square matrix A is                                                    | -                                                                    | •                                                                                                              |                                                                                                                            | Ans: a                |
|       | a) $A^{\theta} = A$                                                     |                                                                      |                                                                                                                |                                                                                                                            |                       |
| 7.    | The system of equation                                                  | on $AX = B$ , where                                                  | B = 0 is                                                                                                       |                                                                                                                            | Ans: b                |
|       | a) Not consistent                                                       |                                                                      |                                                                                                                | ys consistent                                                                                                              |                       |
|       | c) consistent only if $\rho$                                            |                                                                      |                                                                                                                |                                                                                                                            |                       |
| 8.    | Given that the three                                                    | ee matrices $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$              | $\begin{bmatrix} x & 0 \\ y & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ x & 1 \\ 0 & y \end{bmatrix}$ | $\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 7 & 0 \end{bmatrix}, \begin{bmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ | are non-singular      |
|       | matrices with equal d                                                   |                                                                      |                                                                                                                | •                                                                                                                          | Ans: b                |
|       | a) $x = 1, y = -1$                                                      | b) $x = 1, y = 1$                                                    | C                                                                                                              | (x) x = -1, y = 1                                                                                                          | d) None               |



|     |      | a) 14/5                                                                              | b) 12/7                                                        | c) 12/F                                          | d) 14/3                                             |
|-----|------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|
|     |      |                                                                                      | •                                                              | c) 12/5                                          | •                                                   |
|     | 21.  | The value of c of rolles                                                             | _                                                              | $(0,\pi)$ is Ans.                                |                                                     |
|     |      | a) $\pi$                                                                             | b) $\frac{\pi}{4}$                                             | $c)\frac{\pi}{3}$                                | d) $\frac{\pi}{2}$                                  |
|     | 22.  | Find c using CMVT for f                                                              | (x)=sinx , $g(x)$ =cosx in $[a,$                               | , <i>b</i> ] Ans.d                               |                                                     |
|     |      | a) a-b                                                                               | b) a+b                                                         | c) (a-b)/2                                       | d) (a+b)/2                                          |
|     | 23.  | The value of c of rolles                                                             | theorem for $f(x)=x+\frac{1}{x}$ in (                          | $(\frac{1}{2},2)$ is Ans.b                       |                                                     |
|     |      | a) 0                                                                                 | b) 1                                                           | c) 2 d                                           | 1) 3                                                |
|     | 24.  | If $u=x^2-2y$ , $v = x+y+z$ , w                                                      | = x-2y+3z, then ∂(u,v,w),                                      | /ð(x,y,z) = Aι                                   | ns. b                                               |
|     | -    | 5x+3 b) 10x+4                                                                        | c) 5                                                           | d) 0                                             |                                                     |
|     | 25.  | If $u = x + y + z$ , $uv = y + z$ , $uv = y + z$                                     | uvw=z, then ð(x,y,z)/ ð(u                                      | ,v,w) = Ans.o                                    |                                                     |
|     | a) เ |                                                                                      | b) u+v                                                         | c) u²v                                           | d) 1                                                |
|     | 26.  | If $u=x+y$ , $w=x^3+y^3+z^3$ , $v=$                                                  | $x^2+y^2+z^2-2xy-2yz-2zx$ are                                  | functionally dependent                           | t then the                                          |
|     |      | relation between them                                                                |                                                                | Ans                                              | s.a                                                 |
|     |      | a) u+w=v                                                                             | b) 0                                                           | c) 1                                             | d) 2                                                |
|     | 27.  | If $u=(x-y)/x+y$ , $v=xy/(x+y)$                                                      | y) <sup>2</sup> are functionally depe                          |                                                  |                                                     |
|     |      | them is                                                                              |                                                                | Ans.a                                            |                                                     |
|     |      | a) $u^2+4v=1$                                                                        | b) u=v                                                         | •                                                | d) none                                             |
|     | 28.  | If u=yz/x, v=zx/y, w=xy/                                                             |                                                                |                                                  | s. d                                                |
|     |      | a) 1                                                                                 | b) 2                                                           | c) 3                                             | d) 4                                                |
| IES |      |                                                                                      |                                                                |                                                  |                                                     |
| iLJ |      |                                                                                      |                                                                |                                                  |                                                     |
|     | 1.   | The matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is                        | s                                                              |                                                  | Ans: c                                              |
|     |      | a) Singular                                                                          | b) Symmetric                                                   | c) Skew- symmetric                               | d) None                                             |
|     | 2.   | The inverse of an orth                                                               | ogonal matrix is                                               |                                                  | Ans: d                                              |
|     |      | a) Unit matrix                                                                       | b) Hermitian                                                   | c) Skew Hermitian                                | d) Orthogonal                                       |
|     | 3.   | If 2,3,5 are the eigen                                                               | values of a matrix A ar                                        | nd if $B = P^{-1}AP$ , then                      | eigen values of B are                               |
|     |      | Ans: (a)                                                                             |                                                                |                                                  |                                                     |
|     |      | a) 2,3,5                                                                             | b) -2,-3,-5                                                    | c) $\frac{1}{2}$ , $\frac{1}{2}$ , $\frac{1}{2}$ | d) $-\frac{1}{2}$ , $-\frac{1}{3}$ , $-\frac{1}{5}$ |
|     |      |                                                                                      |                                                                | 2 3 3                                            | 2 3 3                                               |
|     | 4.   | The eigen values of A                                                                | $=\begin{bmatrix} 1 & 1 \end{bmatrix}$ are                     |                                                  | Ans: (b)                                            |
|     |      | a) 1,3                                                                               |                                                                | c) -3,-4                                         | d) 1,-4                                             |
|     | 5.   | The eigen vector of th                                                               | ne matrix $A = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$ i | s                                                | Ans: (d)                                            |
|     |      | - 44-                                                                                | c) $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$                      |                                                  | 1                                                   |
|     |      | a) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ b) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | <sup>c)</sup> [1]                                              | <sup>u)</sup> [ 1                                | ]                                                   |

### **WEBSITES:**

- $1. \quad www.geocities.com/siliconvalley/2151/matrices.html$
- 2. www.mathforum.org/key/nucalc/fourier.html

- 3. www.mathworld.wolfram.com
- 4. www.eduinstitutions.com/rec.htm
- 5. www.isical.ac.in
- 6. http://nptel.ac.in/courses/111108066/
- 7. http://nptel.ac.in/courses/111106051/
- 8. <a href="http://nptel.ac.in/courses/111102011/">http://nptel.ac.in/courses/111102011/</a>
- 9. <a href="http://nptel.ac.in/syllabus/syllabus.php?subjectId=111103019">http://nptel.ac.in/syllabus/syllabus.php?subjectId=111103019</a>

### **EXPERT DETAILS:**

#### **INTERNATIONAL**

Prof. Diliberto, Stephen P.L.

Research Area: Ordinary Differential Equations,

Postal Address: Department of Mathematics

University of California,

Berkeley.

Email ID: dliberto@math.berkeley.edu

#### **NATIONAL**

1. Prof. N.S. Gopal Krishna

Research Area: Differential Equations,

Postal Address: Department of Mathematics,

IIT Mumbai.

Email ID: gopal@math.iitb.ac.in

2. Prof. S. Kesavan

Research Area: Analysis and Differential Equations,

Postal Address: Department of Mathematics,

Institute of Mathematical Sciences, Chennai.

Email ID: kesh@imsc.res.in

#### **JOURNALS:**

#### INTERNATIONAL

- 1. Journal of American Mathematical Society
- 2. Journal of differential equations Elsevier
- 3. Pacific Journal of Mathematics
- 4. Journal of Australian Society
- 5. Bulletin of "The American Mathematical Society"
- 6. Bulletin of "The Australian Mathematical Society"
- 7. Bulletin of "The London Mathematical Society"

#### **NATIONAL**

- 1. Journal of Interdisciplinary Mathematics
- 2. Indian Journal of Pure and Applied Mathematics
- 3. Indian Journal of Mathematics
- 4. Proceedings of Mathematical Sciences
- 5. Journal of Mathematical and Physical Sciences.
- 6. Journal of Indian Academy and Sciences

#### LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Unitary and orthogonal matrices
- 2. Eigen values and Eigen Vectors
- 3. Maxima and Minima of functions of two variables
- 4. Mean value theorems for single variable
- 5. Concept of sequence, series and alternative series

### **CASE STUDIES / SMALL PROJECTS:**

1. Describe about the Quadratic forms and its nature.

- 2. Discuss about the Concept of Maxima and Minima of functions of two variables in detail.
- 3. Describe about the geometrical meaning of mean value theorems.
- 4. Discuss about the Cayles Hamilton theorem with examples.
- 5. Describe about Maxima and minima of functions of two variables and three variables using Method of Lagrange.